行业标签: 发布时间:2018-10-29
作者:华北区 EP 工程师 Brian Wang ,华北区 C2000 工程师 Young Hu
一、功能描述:
CSM加密是C2000系列芯片最基础的加密方式,也是在前代产品(如F2803x/F2806x)中广泛采用的加密方式。在最新的28004x、2837x等芯片中增加了双码安全模块(DCSM),该功能支持将芯片中的memory划为两个独立区域,并设置各自独立的的128位CSM密码。该功能可以阻止未授权人员访问加密内容,进而有效防止您的代码被重复或逆向编译;与此同时,需要维护与升级的代码可以存储于另一个独立区域内,并授权给相关人员使用。合理运用此功能,可以进一步地提高产品的安全性以及易用性。
二、功能使用:
2.1 芯片存储的分区设置
下面以Control Suite中TMS320F28377S的 bl
首先必须明确,虽然DCSM模块中设计了相关机制允许用户反复设置和使用该功能,但对于DCSM模块的不当操作仍然可能锁死芯片,因此建议您在工程开发的末尾阶段再进行DCSM模块的相关设置和操作。
为了充分发挥双码安全模块的作用,需要根据工程需要对MCU中的资源进行分区配置。通过配置GRABRAMx/GRABSECTx寄存器,按需求将RAM/FLASH分别划入不同的Zone中,从而实现用两套独立密码对不同区域分别进行安全管理。
图1 GRABRAMx/GRABSECTx寄存器设置
以工程bl
.sect "dcsm_zsel_z1"
.long 0xFFFFFFFF ;Z1-EXEONLYRAM
.long 0xFFFFFFFF ;Z1-EXEONLYSECT
.long 0xFFFFFFFF ;Z1-GRABRAM
.long 0xFFFFFFFE ;Z1-GRABSECT
.sect "dcsm_zsel_z2"
.long 0xFFFFFFFF ;Z2-EXEONLYRAM
.long 0xFFFFFFFF ;Z2-EXEONLYSECT
.long 0xFFFFFFFF ;Z2-GRABRAM
.long 0XFFFFFFF7 ;Z2-GRABSECT
2.2分区的基本设置
在完成了对要保护存储的分区之后,我们需要了解如何给两个区域设置不同的密码。
对于两个保护Zone,每个都有一个专属的OTP Block,以对各Zone进行安全设置,具体包含的资源及作用如下:
Zx-li | 配置Zx OTP中Zone Select Block的位置 |
Zx-PSWDLOCK | 用于使能Password Lock |
Zx-CRCLOCK | 用于使能Safe CRC |
ZoneSelectBlock(0x20-0x1F0) | Zone Select Block 预留位置 |
Zx-EXEONLYRAM | 用于使能RAM的Execute-only 保护 |
Zx-EXEONLYSECT | 用于使能FLASH的Execute-only 保护 |
Zx-GRABRAM | 用于配置RAM的所在分区 |
Zx-GRABSECT | 用于配置FLASH的所在分区 |
Zx-CSMPASSWORD | 用于配置分区的CSM密码 |
为了能够让用户多次使用该功能、设置不同的密码,如图2,28004x系列MCU在USERS OTP中设置了多个存储密码及相关信息的位置(ZoneSelect Block),用户可以通过li
li
图2 Zonex OTP Flash
图3 Zx-li
以工程bl
.sect "dcsm_otp_z1_li
.long 0x1FFFFFFF ;Z1-li
.long 0xFFFFFFFF ;Reserved
.long 0x1FFFFFFF ;Z1-li
.long 0xFFFFFFFF ;Reserved
.long 0x1FFFFFFF ;Z1-li
.long 0xFFFFFFFF ;Reserved
类似地,如果后续工程需要对密码以及分区情况进行修改,我们可以启用Zone_Select Block1,将li
.sect "dcsm_otp_z1_li
.long 0x1FFFFFFE ;Z1-li
.long 0xFFFFFFFF ;Reserved
.long 0x1FFFFFFE ;Z1-li
.long 0xFFFFFFFF ;Reserved
.long 0x1FFFFFFE ;Z1-li
.long 0xFFFFFFFF ;Reserved
此时需要注意还需要将CMD文件中对应Zone Select Block地址的内容进行修改,保证写入的Flash地址与当前的Zone Select Block正确对应。
/* DCSM Z1 Zone Select Contents (!!Movable!!) */
/* Z1 OTP. Z1 password locations / Flash and RAM partitioning */
DCSM_ZSEL_Z1_P0 : origin = 0x78030, length = 0x000010
最后在SECTIONS中将要写入区域对应处的type=DSECT 删除,否则FLASH写入不会进行。
SECTIONS
{
b0_dcsm_otp_z1_li
/* Delete type=DSECT when writing in OTP */
特别需要注意的是:由于以上涉及到的寄存器都位于OTP(One-Time Programmable)FLASH中,不能进行反复更改,因此建议在开发后期代码以及内存分配确定之后,再进行相关的设置。
2.3 加密功能及其使用
在完成了对MCU中memory的分区以及Zone Select Block位置的设置后,下面来看DCSM所支持的几种加密模功能:
1)CSM密码加密与解密:
CSM加密是DCSM加密的基础,在完成对MCU 存储的分区之后,需要为分区设置各自的密码才能使能加密功能。密码寄存器Zx-CSMPSWD0/1/2/3位于各自的OTP的Zone Select Block中,具体位置由该区域的li
以工程bl
.sect "dcsm_zsel_z1"
.long 0xFFFFFFFF ;Z1-EXEONLYRAM
.long 0xFFFFFFFF ;Z1-EXEONLYSECT
.long 0xFFFFFFFF ;Z1-GRABRAM
.long 0xFFFFFFBF ;Z1-GRABSECT
.long 0x11223344 ;Z1-CSMPSWD0 (LSW of 128-bit password)
.long 0x11223344 ;Z1-CSMPSWD1
.long 0x55667788 ;Z1-CSMPSWD2
.long 0x55667788 ;Z1-CSMPSWD3 (MSW of 128-bit password)
同样需要在CMD中对相应的dcsm_zsel_zx 的sections 进行修改,删除type=DSECT,对FLASH的操作才能够进行。这样就完成了Zonex 密码的设置工作。
b0_dcsm_zsel_z1 : > B0_DCSM_ZSEL_Z1_P0 PAGE = 0
进行加密后,通过仿真器读取Zone 1 OTP Flash结果如下:
图3 加密后的OTP区域
可以看到此时Zone 1 OTP Flash中除了 CSMPSWDx寄存器中的密码,其它部分均进行了加密操作。之所以采用这样的设计,是为了在开发初期开发者可以利用这一特性随时查看CSM,避免因为密码遗忘或者写入操作造成芯片被锁死。对于密码区域的加密需要通过Password Lock 功能进行,将在后文进行进一步描述。
此时,如果试图通过仿真器读取加密区域Flash B,可以看到Flash区域也进行了加密(返回全0):
图3 未加密的Flash(左)与加密后的Flash(右)
要对CSM进行解密,需要经过Password match flow(PMF)流程,程序将从两个Zone读取CSM PWL并与写入CSMKEYx寄存器的密码进行比对,若密码完全一致,则为该区域解密,否则解密失败。
图4 Password Match Flow 流程图
解密操作可以通过几种方法进行,首先可以在debug界面单击tools -> on chip flash -> 在对应位置处输入密码,点击Unlock:
图5在On chip flash中进行密码匹配
也可以在.gel文件中找到写入csmkey寄存器的代码段,并自行修改密码:
*(unsigned long *)0x5F010 = 0x11223344; // Virtual password
*(unsigned long *)0x5F012 = 0x55667788;
*(unsigned long *)0x5F014 = 0x11223344;
*(unsigned long *)0x5F016 = 0x55667788;
另外,也可以通过在芯片内部执行一段解密程序完成解密操作,具体代码可参照.gel文件。
以bl
而在不输入正确密码时,会出现解锁失败的提示,烧录也会报错。
图6 未解锁状态下进行烧录报错
NOTE:特别需要注意的是,在使用280049系列芯片时,与传统C2000系列芯片不同,其ZxOTP_CSMPSWD1寄存中写入的默认密码不是全“1”。由于OTP寄存器的特殊性,只能在默认设置的基础上将1改成0,否则可能发生FLASH写入错误。
图8 28004x CSMPWSD1默认密码表(部分)
2)仿真代码保密逻辑 Emulation Code Security Logic(ECSL)
在CSM的基础上,芯片利用CSM密码的后64位设计了仿真加密逻辑。如果试图在加密代码中Halt就会触发该保护,断开仿真连接。用户需要在CSMKEY(0/1)中写入正确的64位密码才能启用仿真,但此时并不会解锁CSM保护,对CSMKEY(0/1)的写入方法可以参考上一条。
图8 在加密代码中Halt触发仿真保护
特别注意,在debug一个加密MCU时,仿真器需要一些时间控制CPU,但此时CPU可能已经运行并触发ECSL保护导致断连。要解决此问题,请使用Wait Boot Mode boot选项,在此模式中,CPU会运行在一个循环中而不进入应用程序,从而避免触发保护。具体设置方法请参考技术手册Boot Rom部分,Launchpad可以通过拨动相应的开关进入此模式。
3)CPU加密逻辑 CPU Secure Logic(CPUSL)
CPU加密逻辑可以防止未授权者通过Watch Window读取CPU寄存器,在程序指针指向保护区域时,所有对于CPU寄存器的访问都被禁止(程序指针除外)。在此情况下,最好不要对CPU寄存器进行写入。另外,如果CSM被解锁,此外,CPUSL也将被关闭。
图8 加密代码运行过程中CPU Registers不可见
4)仅执行保护 Execute-Only Protection
对于存储关键数据的RAM或FLASH,TI提供了Execute-Only Protection。当该逻辑启用,任何对该区域数据的读取都将被禁止。例如如果试图使用另一个加密区域中的代码对Execute-Only Protection加密区域中的代码进行复制、读取等操作都将被禁止。通过写入EXEONLYSECT以及EXEONLYRAM寄存器对应位的值,可以启用该功能。
5)密码锁 Password Lock
如前文所述,若只采用CSM加密,可以通过Memory Browser发现此时对应CSM密码的位置并没有进行加密。在开发完成后,开发者需要通过Password Lock功能对此区域进行加密,以防他人读取密码并进行解密。启用该保护的方法是向对应区域的PSWDLOCK寄存器0:3位写入0xF以外的值。
图9 未开启Password Lock时的ZSB0寄存器值
以bl
.sect "dcsm_otp_z1_pswdlock"
.long 0xFFFFFFFE ;Z1-PSWDLOCK
.long 0xFFFFFFFF ;Reserved
图10开启Password Lock时的ZSB0寄存器值
至此,我们就完成了DCSM中各种安全功能的介绍和设置,特别注意,由于PSWDLOCK等寄存器并不位于Zone Select Block当中,因此只能进行一次写入,不能进行更改,因此应该在程序开发后期再加此类保护。
三、小结
DCSM加密相较于传统的CSM加密具有更完善的保密措施和更灵活的使用方法。双密码的引入允许用户用不同密码管理不同部分的代码,为产品的代码安全以及后期的升级维护都带来了极大的便利。本实例以2837x系列芯片为对象,描述了DCSM模块常见的使用方法。28004x系列芯片仅在DCSM OTP区域的数量和使用方法上与2837x略有不用,也可参照此说明进行相应操作。
另外部分C2000芯片也可以使用Unique ID作为种子进行进一步的加密,具体方法不在此展开。